Auction-Based Combinatorial Multi-Armed Bandit Mechanisms with Strategic Arms

Guoju Gao, He Huang*, Mingjun Xiao*, Jie Wu, Yu-E Sun, Sheng Zhang

UNIVERSITY

Background & Motivation

Model & Design Goal

Solution

How to select **one arm** in each round such that the **cumulative rewards** can be maximized under the round constraint?

SOOCHOW

How to select **K** arms in each round such that the **cumulative** rewards can be maximized under the budget constraint?

VS.

exploration

exploitation

Our focus: CMAB model with strategic arms

OOCHOW

rate allocation in wireless network

SOOCHOW UNIVERSITY

user selection in crowdsensing

Ad recommendation in social network

G. Gao et al. IEEE INFOCOM 2021

Goals for ACMAB

Truthfulness

> each arm will truthfully bid its cost value

Individual rationality

 \succ each arm's payoff must be greater than 0

Computational efficiency

polynomial-time complexity

Good regret performance

the difference in the total achieved rewards between the optimal policy and our proposed bandit-pulling policy

Existing Methods for ACMAB

First Exploring:

- ➤ uses a fraction of budget to learn arms' rewards
- determines the payment with the maximum value

Second Exploiting:

- uses remaining budget to select the top K "best" arms
- determines the critical payment (auction theory)
- ➤ the average sampling rewards will not update

SOOCHOW

Winning Arm Selection Procedure

Initialization phase

- > selects all arm in the first round to initialize some parameters
- \succ determines the payment with the maximum value c_{max}
- \succ updates the remaining budget

Winning arm selection phase

- > acquires all arms' UCB-based rewards in the previous round
- > computes the ratios of UCB-based rewards and bids
- selects top K arms according to the sorted ratio values

Payment Determination Procedure

Myerson rule for auction mechanisms

 \checkmark the winner selection process is monotonic

 \checkmark each winner is paid with the critical value

$$p_i^t(b_i) = \min\{\frac{\hat{r}_i(t-1)}{\hat{r}_{K+1}(t-1)} \cdot b_{K+1}, c_{max}\}$$

 $\succ \frac{\widehat{r}_i(t-1)}{\widehat{r}_{K+1}(t-1)}b_{K+1}$ means the critical payment

 $> \min\{ \cdot \}$ ensures the maximum payment

 \succ updates the remaining budget

* For a winning arm, a bid larger than the critical payment will not win, but a smaller bid must win

SOOCHOW

G. Gao et al. IEEE INFOCOM 2021

OOCHOW

SOOCHOW

UNIVERSITY

■ Upper bound on regret (Theorem 1)

The expected regret of AUCB is bounded as $O\left(NK^3\ln(B + NK^2\ln(NK^2))\right)$

Truthfulness in each round (Theorem 2)

Individual rationality (Theorem 3)

Computational efficiency (Theorem 4)

➤ The computational overhead of AUCB is $O(NB+N^2K^2\ln(NK^2))$

Simulation Settings

Compared algorithms

optimal: arms' expected rewards are known in prior; the extremely-critical payment equals to the bid.

separate^[1]: tailor-made exploration budget and exploitation budget; payment in each round is fixed.

> ε -first^[2]: ε *budget for randomness, (1- ε)*budget for the exploitation; payment is based on the average rewards.

÷,	de.	1 C	dele.	a de la c	ririri:	ininini	ririri	d de	1
1		-1-1	$\mathbf{\alpha}$	0.000	•	-1-1-1-	1-1-1-	14141	$\epsilon_{\rm el}$
		1414	N	At	111	na	C	-1-1-	17
		1 C	J	\mathbf{U}	UII	ΠĽ	D	d de	1
j,	141	-1-1	1.11	-1-1-1-	1-1-1-1	\sim		1-1-1	÷
11	111	1. L.	1.11		11111	101010	11111		1.0

parameter name	range
budget, B	$10^4 - 10^6 (5 \times 10^5 \text{ in default})$
number of arms, N	50 - 100 (60 in default)
number of selected arms, K	10 - 50 (20 in default)
expected reward, r_i	0.1 - 1
variance of reward, σ_i	$0 - \min\{r_i/3, (1 - r_i)/3\}$
cost, c_i and bid, b_i	0.1 - 1

[1] A. Biswas, S. Jain, D. Mandal, and Y. Narahari, "A truthful budget feasible multi-armed bandit mechanism for crowdsourcing time critical tasks," in International Conference on Autonomous Agents and Multiagent Systems, 2015, pp. 1101–1109.

[2] L. Tran-Thanh, A. Chapman, E. M. de Cote, A. Rogers, and N. R. Jennings, "Epsilon-first policies for budget-limited multiarmed bandits," in Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

G. Gao et al. IEEE INFOCOM 2021

G. Gao et al. IEEE INFOCOM 2021

- Simulation results show that the total rewards achieved by AUCB are at least 12.49% higher than those of state-of-the-art (e.g., "exploration-separate") algorithms.
- AUCB can ensure the truthfulness and individual rationality of the strategic arms.
- The computational overload of AUCB is polynomial.
- Both the theoretical analysis and simulation results show that AUCB has a good regret bound.

Thank You!

Q & A

gjgao@suda.edu.cn

G. Gao et al. IEEE INFOCOM 2021

SOOCHOW

